enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schoenflies problem - Wikipedia

    en.wikipedia.org/wiki/Schoenflies_problem

    The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.

  3. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. [1]

  4. Sierpiński curve - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_curve

    Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit completely fill the unit square: thus their limit curve, also called the Sierpiński curve, is an example of a space-filling curve.

  5. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]

  6. Jordan curve theorem - Wikipedia

    en.wikipedia.org/wiki/Jordan_curve_theorem

    A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.

  7. Plane curve - Wikipedia

    en.wikipedia.org/wiki/Plane_curve

    A smooth plane curve is a curve in a real Euclidean plane ⁠ ⁠ and is a one-dimensional smooth manifold.This means that a smooth plane curve is a plane curve which "locally looks like a line", in the sense that near every point, it may be mapped to a line by a smooth function.

  8. Oval - Wikipedia

    en.wikipedia.org/wiki/Oval

    An oval (from Latin ovum 'egg') is a closed curve in a plane which resembles the outline of an egg. The term is not very specific, but in some areas (projective geometry, technical drawing, etc.) it is given a more precise definition, which may include either one or two axes of symmetry of an ellipse. In common English, the term is used in a ...

  9. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    The points on or above the red curve provide an example of a closed set whose convex hull is open (the open upper half-plane). Topologically, the convex hull of an open set is always itself open, and the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed. [12]