Search results
Results from the WOW.Com Content Network
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation ) or Lewis acids (such as AlCl 3 ) used to catalyze the reaction.
Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compounds and are common ways of introducing functional groups into benzene rings.
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
Ipso-substitution describes two substituents sharing the same ring position in an intermediate compound in an electrophilic aromatic substitution. Trimethylsilyl, tert-butyl, and isopropyl groups can form stable carbocations, hence are ipso directing groups. Meso-substitution refers to the substituents occupying a benzylic position.
A nucleophilic aromatic substitution (S N Ar) is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution.
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
Halogenation of benzene where X is the halogen, catalyst represents the catalyst (if needed) and HX represents the protonated base. A few types of aromatic compounds, such as phenol, will react without a catalyst, but for typical benzene derivatives with less reactive substrates, a Lewis acid is required as a catalyst.
In a free-radical addition, there are two chain propagation steps. In one, the adding radical attaches to a multiply-bonded precursor to give a radical with lesser bond order. In the other, the newly-formed radical product abstracts another substituent from the adding reagent to regenerate the adding radical. [3]: 743–744