Search results
Results from the WOW.Com Content Network
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.
On the other hand, if the multiplicity m of the root is not known, it is possible to estimate m after carrying out one or two iterations, and then use that value to increase the rate of convergence. If the multiplicity m of the root is finite then g ( x ) = f ( x ) / f ′ ( x ) will have a root at the same location with multiplicity 1.
The secant method is an iterative numerical method for finding a zero of a function f.Given two initial values x 0 and x 1, the method proceeds according to the recurrence relation
The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...
where the zero and one entries of are treated as numerical, rather than logical as for simple graphs, values, explaining the difference in the results - for simple graphs, the symmetrized graph still needs to be simple with its symmetrized adjacency matrix having only logical, not numerical values, e.g., the logical sum is 1 v 1 = 1, while the ...
Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed. For example, a tangent to a curve is a line that cuts the curve at a point that splits in several points if the line is slightly moved.
The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. [4]