Search results
Results from the WOW.Com Content Network
Schematic of Nanopore Internal Machinery and corresponding current blockade during sequencing. A nanopore is a pore of nanometer size. It may, for example, be created by a pore-forming protein or as a hole in synthetic materials such as silicon or graphene.
Nanopore sequencing is a third generation [1] approach used in the sequencing of biopolymers — specifically, polynucleotides in the form of DNA or RNA.
Particles crossing a nanopore are detected one at a time as a transient change in the ionic current flow, which is denoted as a blockade event with its amplitude denoted as the blockade magnitude. As blockade magnitude is proportional to particle size, accurate particle sizing can be achieved after calibration with a known standard.
Fig. 1. Schematic diagram for resistive pulse sensing, in which particles, suspended in a weakly conducting fluid, flow through a nanoconstriction, and are sensed electrically by electrodes placed on either side of the nanoconstriction. Fig. 2. Line drawing of resistive pulse sensing time-based schematic data.
Schematic diagram of one particular realization of nanofluidics in a nanocapillary array membrane, or NCAM. The NCAM is composed of a large number of parallel nanocapillaries, each of which have a pore radius, a/2, which is approximately the same size as the Debye length, κ −1.
Nanoelectrodes are tiny electrodes made of metals or semiconducting materials having typical dimensions of 1-100 nm. Various forms of nanoelectrodes have been developed taking advantage of the different possible fabrication techniques: among the most studied are the nanoband, disk, hemispherical, nanopore geometries as well as the different forms of carbon nanostructures.
Molecular dynamics simulation of a synthetic molecular motor composed of three molecules in a nanopore (outer diameter 6.7 nm) at 250 K [75] This section relies excessively on references to primary sources .
Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery. [4] Traditional lithium-ion battery technology uses active materials, such as cobalt-oxide or manganese oxide, with particles that range in size between 5 and 20 micrometers (5000 and 20000 nanometers – over 100 times nanoscale).