Search results
Results from the WOW.Com Content Network
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗.
In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. [ 1 ] [ 2 ] Because every conjugation map is an inner automorphism , every characteristic subgroup is normal ; though the converse is not guaranteed.
A group that is not abelian but for which every subgroup is normal is called a Hamiltonian group. [10] A concrete example of a normal subgroup is the subgroup = {(), (), ()} of the symmetric group, consisting of the identity and both three
derived subgroup Synonym for commutator subgroup. direct product The direct product of two groups G and H, denoted G × H, is the cartesian product of the underlying sets of G and H, equipped with a component-wise defined binary operation (g 1, h 1) · (g 2, h 2) = (g 1 ⋅ g 2, h 1 ⋅ h 2).
If H is a subgroup of G, then the largest subgroup of G in which H is normal is the subgroup N G (H). If S is a subset of G such that all elements of S commute with each other, then the largest subgroup of G whose center contains S is the subgroup C G (S). A subgroup H of a group G is called a self-normalizing subgroup of G if N G (H) = H.
In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups: = = where is the trivial subgroup.Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups.
For groups of small order, the congruence condition of Sylow's theorem is often sufficient to force the existence of a normal subgroup. Example-1 Groups of order pq, p and q primes with p < q. Example-2 Group of order 30, groups of order 20, groups of order p 2 q, p and q distinct primes are some of the applications. Example-3
The dual notion of a quotient group is a subgroup, these being the two primary ways of forming a smaller group from a larger one. Any normal subgroup has a corresponding quotient group, formed from the larger group by eliminating the distinction between elements of the subgroup. In category theory, quotient groups are examples of quotient ...