enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    Photons are massless particles that can move no faster than the speed of light measured in vacuum. The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. [2]

  3. Photonic molecule - Wikipedia

    en.wikipedia.org/wiki/Photonic_molecule

    As the photons entered the cloud, their energy excited atoms along their path, causing them to lose speed. Inside the cloud medium, the photons dispersively coupled to strongly interacting atoms in highly excited Rydberg states. This caused the photons to behave as massive particles with strong mutual attraction (photon molecules).

  4. Wave–particle duality - Wikipedia

    en.wikipedia.org/wiki/Wave–particle_duality

    In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.

  5. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The quantization of the electromagnetic field is a procedure in physics turning Maxwell's classical electromagnetic waves into particles called photons. Photons are massless particles of definite energy, definite momentum, and definite spin. To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an ...

  6. Ionizing radiation - Wikipedia

    en.wikipedia.org/wiki/Ionizing_radiation

    Since most of the ionized atoms are due to the secondary beta particles, photons are indirectly ionizing radiation. [10] Radiated photons are called gamma rays if they are produced by a nuclear reaction, subatomic particle decay, or radioactive decay within the nucleus. They are called x-rays if produced outside the nucleus. The generic term ...

  7. Quantum microscopy - Wikipedia

    en.wikipedia.org/wiki/Quantum_microscopy

    Photodetachment is the removal of electrons from an atom using interactions with photons or other particles. [9] Photodetachment microscopy made it possible to image the spatial distribution of the ejected electron. The microscope developed in 1996 was the first to image photodetachment rings of a negative Bromine ion. [10]

  8. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    The experiment belongs to a general class of "double path" experiments, in which a wave is split into two separate waves (the wave is typically made of many photons and better referred to as a wave front, not to be confused with the wave properties of the individual photon) that later combine into a single wave.

  9. Photon structure function - Wikipedia

    en.wikipedia.org/wiki/Photon_structure_function

    Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...