enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombic dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedral_honeycomb

    The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.

  3. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron can be seen as a degenerate limiting case of a pyritohedron, with permutation of coordinates (±1, ±1, ±1) and (0, 1 + h, 1 − h 2) with parameter h = 1. These coordinates illustrate that a rhombic dodecahedron can be seen as a cube with six square pyramids attached to each face, allowing them to fit together into a ...

  4. Synergetics (Fuller) - Wikipedia

    en.wikipedia.org/wiki/Synergetics_(Fuller)

    1 space filling oblate octa Cuboctahedron 2.5 edges 1/2, vol. = 1/8 of 20 Duo-Tet Cube 3 24 MITEs Octahedron 4 dual of cube, spacefills w/ tet Rhombic Triacontahedron 5 radius = ~0.9994, vol. = 120 Ts Rhombic Triacontahedron 5+ radius = 1, vol. = 120 Es Rhombic Dodecahedron 6 space-filler, dual to cuboctahedron Rhombic Triacontahedron 7.5 ...

  5. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    A necessary condition for a polyhedron to be a space-filling polyhedron is that its Dehn invariant must be zero, [3] [4] ruling out any of the Platonic solids other than the cube. Five space-filling convex polyhedra can tessellate 3-dimensional euclidean space using translations only.

  6. Parallelohedron - Wikipedia

    en.wikipedia.org/wiki/Parallelohedron

    The rhombic dodecahedron, generated from four line segments, no two of which are parallel to a common plane. Its most symmetric form is generated by the four long diagonals of a cube. [2] It tiles space to form the rhombic dodecahedral honeycomb. The elongated dodecahedron, generated from five line segments, with two triples of coplanar segments.

  7. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    [1] [2] There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual icosidodecahedron (right), which is the core of the dual compound.

  8. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    Vertex configurations [4] Faces [5] Edges [5] Vertices [5] Point group [6] Truncated tetrahedron: 3.6.6: 4 triangles 4 hexagons: 18 12 T d: Cuboctahedron: 3.4.3.4: 8 triangles 6 squares: 24 12 O h: Truncated cube: 3.8.8: 8 triangles 6 octagons: 36 24 O h: Truncated octahedron: 4.6.6: 6 squares 8 hexagons 36 24 O h: Rhombicuboctahedron: 3.4.4.4 ...

  9. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    The Wigner–Seitz cell of the face-centered cubic lattice is a rhombic dodecahedron. [9] In mathematics, it is known as the rhombic dodecahedral honeycomb . The Wigner–Seitz cell of the body-centered tetragonal lattice that has lattice constants with c / a > 2 {\displaystyle c/a>{\sqrt {2}}} is the elongated dodecahedron .