enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Averaged stochastic gradient descent, invented independently by Ruppert and Polyak in the late 1980s, is ordinary stochastic gradient descent that records an average of its parameter vector over time. That is, the update is the same as for ordinary stochastic gradient descent, but the algorithm also keeps track of [37]

  3. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators. It was developed in the 1980s in operations research, under the name of "pathwise gradients", or "stochastic gradients".

  4. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks. [29] [30] In the direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.

  5. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    In the stochastic setting, under the same assumption that the gradient is Lipschitz continuous and one uses a more restrictive version (requiring in addition that the sum of learning rates is infinite and the sum of squares of learning rates is finite) of diminishing learning rate scheme (see section "Stochastic gradient descent") and moreover ...

  6. Stochastic gradient Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_Gradient_Langev...

    SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.

  7. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    It is a stochastic gradient descent method in that the filter is only adapted based on the ... This is based on the gradient descent algorithm. ... Code of Conduct;

  8. Subgradient method - Wikipedia

    en.wikipedia.org/wiki/Subgradient_method

    When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of steepest descent. Subgradient methods are slower than Newton's method when applied to minimize twice continuously differentiable convex functions.

  9. Łojasiewicz inequality - Wikipedia

    en.wikipedia.org/wiki/Łojasiewicz_inequality

    In short, because the gradient descent steps are too large, the variance in the stochastic gradient starts to dominate, and starts doing a random walk in the vicinity of . For decreasing learning rate schedule with η k = O ( 1 / k ) {\textstyle \eta _{k}=O(1/k)} , we have E [ f ( x k ) − f ∗ ] = O ( 1 / k ) {\displaystyle \mathbb {E} \left ...