Ad
related to: finding the discriminant worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Try Easel
Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
This version of the quadratic formula is used in Muller's method for finding the roots of general functions. It can be derived from the standard formula from the identity x 1 x 2 = c / a {\displaystyle x_{1}x_{2}=c/a} , one of Vieta's formulas .
The discriminant of a quadratic form, concretely the class of the determinant of a representing matrix in K / (K ×) 2 (up to non-zero squares) can also be defined, and for a real quadratic form is a cruder invariant than signature, taking values of only "positive, zero, or negative".
Thus, given V and y, one can find the required () by solving for its coefficients in the equation =: [4] a = V − 1 y {\displaystyle a=V^{-1}y} . That is, the map from coefficients to values of polynomials is a bijective linear mapping with matrix V , and the interpolation problem has a unique solution.
In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where is its variable, and , , and are coefficients.The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
Ad
related to: finding the discriminant worksheetteacherspayteachers.com has been visited by 100K+ users in the past month