Search results
Results from the WOW.Com Content Network
Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them. Examples are the decimal.Decimal or num7.Num type of Python, and analogous types provided by other languages.
Some computer languages have implementations of decimal floating-point arithmetic, including PL/I, .NET, [3] emacs with calc, and Python's decimal module. [4] In 1987, the IEEE released IEEE 854 , a standard for computing with decimal floating point, which lacked a specification for how floating-point data should be encoded for interchange with ...
3 / 7 1-digit-denominator Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures
These are the same five exceptions as were defined in IEEE 754-1985, but the division by zero exception has been extended to operations other than the division. Some decimal floating-point implementations define additional exceptions, [36] [37] which are not part of IEEE 754: Clamped: a result's exponent is too large for the destination format.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be represented exactly using a decimal base (0.2, or 2 × 10 −1). However, 1/3 cannot be represented exactly by either binary (0.010101...) or decimal (0.333...), but in base 3 ...
Shifting right by 1 bit will divide by two, always rounding down. However, in some languages, division of signed binary numbers round towards 0 (which, if the result is negative, means it rounds up). For example, Java is one such language: in Java, -3 / 2 evaluates to -1, whereas -3 >> 1 evaluates to -2.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.