Search results
Results from the WOW.Com Content Network
In time series analysis and statistics, the cross-correlation of a pair of random process is the correlation between values of the processes at different times, as a function of the two times. Let ( X t , Y t ) {\displaystyle (X_{t},Y_{t})} be a pair of random processes, and t {\displaystyle t} be any point in time ( t {\displaystyle t} may be ...
In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.
In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the multivariate frequency distribution of the variables. They are heavily used in survey research, business intelligence, engineering, and scientific research.
SuperCROSS – comprehensive statistics package with ad-hoc, cross tabulation analysis; Systat – general statistics package; The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural ...
The concordance correlation coefficient is nearly identical to some of the measures called intra-class correlations.Comparisons of the concordance correlation coefficient with an "ordinary" intraclass correlation on different data sets found only small differences between the two correlations, in one case on the third decimal. [2]
It can be computationally expensive to solve the linear regression problems. Actually, the nth-order partial correlation (i.e., with |Z| = n) can be easily computed from three (n - 1)th-order partial correlations. The zeroth-order partial correlation ρ XY·Ø is defined to be the regular correlation coefficient ρ XY.
In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses (MANOVA, ANOVA, ANCOVA).
Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [1] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously). [1]