Search results
Results from the WOW.Com Content Network
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]
Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
An independent set of ⌊ ⌋ vertices (where ⌊ ⌋ is the floor function) in an n-vertex triangle-free graph is easy to find: either there is a vertex with at least ⌊ ⌋ neighbors (in which case those neighbors are an independent set) or all vertices have strictly less than ⌊ ⌋ neighbors (in which case any maximal independent set must have at least ⌊ ⌋ vertices). [4]
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
A clique-sum of two planar graphs and the Wagner graph, forming a K 5-free graph. In graph theory , Wagner's theorem is a mathematical forbidden graph characterization of planar graphs , named after Klaus Wagner , stating that a finite graph is planar if and only if its minors include neither K 5 (the complete graph on five vertices ) nor K 3,3 ...
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
In the mathematical field of graph theory, the Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges, chromatic number 4, and crossing number 5. It is named after German mathematician Herbert Grötzsch, who used it as an example in connection with his 1959 theorem that planar triangle-free graphs are 3-colorable.
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.