enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  3. Paul Smolensky - Wikipedia

    en.wikipedia.org/wiki/Paul_Smolensky

    The ICS Architecture builds on Harmony Theory, a formalism for artificial neural networks that introduced the restricted Boltzmann machine architecture. This work, up through the early 2000s, is presented in the two-volume book written with Géraldine Legendre, The Harmonic Mind. [6]

  4. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    This is not a restricted Boltzmann machine. A Boltzmann machine (also called Sherrington–Kirkpatrick model with external field or stochastic Ising model), named after Ludwig Boltzmann, is a spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, [1] that is a stochastic Ising model.

  5. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Restricted Boltzmann machines (RBMs) are often used as a building block for multilayer learning architectures. [6] [24] An RBM can be represented by an undirected bipartite graph consisting of a group of binary hidden variables, a group of visible variables, and edges connecting the hidden and visible nodes.

  6. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    A more efficient architecture is called restricted Boltzmann machine where connection is only allowed between hidden unit and visible unit, which is described in the next section. Multimodal deep Boltzmann machines can process and learn from different types of information, such as images and text, simultaneously.

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.

  8. Convolutional deep belief network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_deep_belief...

    In computer science, a convolutional deep belief network (CDBN) is a type of deep artificial neural network composed of multiple layers of convolutional restricted Boltzmann machines stacked together. [1]

  9. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    It uses a restricted Boltzmann machine to model each new layer of higher level features. Each new layer guarantees an increase on the lower-bound of the log likelihood of the data, thus improving the model, if trained properly.