enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ogive (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ogive_(statistics)

    To do this, we draw a line from the point of 50% on the axis of percentage until it intersects with the curve. Then we vertically project the intersection onto the horizontal axis. The last intersection gives us the desired value. The frequency polygon and ogive are used to compare two statistical sets whose number could be different.

  3. Cumulative frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Cumulative_frequency_analysis

    Cumulative frequency distribution, adapted cumulative probability distribution, and confidence intervals. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance.

  4. Nonagon - Wikipedia

    en.wikipedia.org/wiki/Nonagon

    In geometry, a nonagon (/ ˈ n ɒ n ə ɡ ɒ n /) or enneagon (/ ˈ ɛ n i ə ɡ ɒ n /) is a nine-sided polygon or 9-gon.. The name nonagon is a prefix hybrid formation, from Latin (nonus, "ninth" + gonon), used equivalently, attested already in the 16th century in French nonogone and in English from the 17th century.

  5. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    The frequency of a geodesic polyhedron is defined by the sum of ν = b + c. A harmonic is a subfrequency and can be any whole divisor of ν. Class II always have a harmonic of 2, since ν = 2b. The triangulation number is T = b 2 + bc + c 2. This number times the number of original faces expresses how many triangles the new polyhedron will have.

  6. Polygonal number - Wikipedia

    en.wikipedia.org/wiki/Polygonal_number

    In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...

  7. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  8. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...

  9. Generalized polygon - Wikipedia

    en.wikipedia.org/wiki/Generalized_polygon

    The incidence graph of a generalized digon is a complete bipartite graph K s+1,t+1.; For any natural n ≥ 3, consider the boundary of the ordinary polygon with n sides. Declare the vertices of the polygon to be the points and the sides to be the lines, with set inclusion as the incidence relation.