Search results
Results from the WOW.Com Content Network
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
Random variables are assumed to have the following properties: complex constants are possible realizations of a random variable; the sum of two random variables is a random variable; the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and
A distinction needs to be made between a random variable whose distribution function or density is the sum of a set of components (i.e. a mixture distribution) and a random variable whose value is the sum of the values of two or more underlying random variables, in which case the distribution is given by the convolution operator.
The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.
This implies that in a weighted sum of variables, the variable with the largest weight will have a disproportionally large weight in the variance of the total. For example, if X and Y are uncorrelated and the weight of X is two times the weight of Y , then the weight of the variance of X will be four times the weight of the variance of Y .
Consider the sum, Z, of two independent binomial random variables, X ~ B(m 0, p 0) and Y ~ B(m 1, p 1), where Z = X + Y.Then, the variance of Z is less than or equal to its variance under the assumption that p 0 = p 1 = ¯, that is, if Z had a binomial distribution with the success probability equal to the average of X and Y 's probabilities. [8]