Search results
Results from the WOW.Com Content Network
The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...
The Dirac sea is a theoretical model of the electron vacuum as an infinite sea of electrons with negative energy, now called positrons. It was first postulated by the British physicist Paul Dirac in 1930 [1] to explain the anomalous negative-energy quantum states predicted by the relativistically-correct Dirac equation for electrons. [2]
In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress–energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical approximation to a nonzero vacuum energy .
A vacuum can be viewed not as empty space but as the combination of all zero-point fields. In quantum field theory this combination of fields is called the vacuum state, its associated zero-point energy is called the vacuum energy and the average energy value is called the vacuum expectation value (VEV) also called its condensate.
As a result, QED vacuum contains vacuum fluctuations (virtual particles that hop into and out of existence), and a finite energy called vacuum energy. Vacuum fluctuations are an essential and ubiquitous part of quantum field theory. Some experimentally verified effects of vacuum fluctuations include spontaneous emission and the Lamb shift. [15]
The field strength of vacuum energy is a concept proposed in a theoretical study that explores the nature of the vacuum and its relationship to gravitational interactions. The study derived a mathematical framework that uses the field strength of vacuum energy as an indicator of the bulk (spacetime) resistance to localized curvature.
Solutions of the Dirac equation contain negative energy quantum states. As a result, an electron could always radiate energy and fall into a negative energy state. Even worse, it could keep radiating infinite amounts of energy because there were infinitely many negative energy states available.
The difference in energy between that which is necessary to release an ion from its lattice and the energy given off when it combines with a solvent molecule is called the enthalpy change of solution. A negative value for the enthalpy change of solution corresponds to an ion that is likely to dissolve, whereas a high positive value means that ...