enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's circuit laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

    The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:

  3. Nodal analysis - Wikipedia

    en.wikipedia.org/wiki/Nodal_analysis

    Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.

  4. Kirchhoff's laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_laws

    Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph

  5. Tellegen's theorem - Wikipedia

    en.wikipedia.org/wiki/Tellegen's_theorem

    The Tellegen theorem is applicable to a multitude of network systems. The basic assumptions for the systems are the conservation of flow of extensive quantities (Kirchhoff's current law, KCL) and the uniqueness of the potentials at the network nodes (Kirchhoff's voltage law, KVL).

  6. Harmonic balance - Wikipedia

    en.wikipedia.org/wiki/Harmonic_balance

    The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of ...

  7. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    To satisfy the Kirchhoff's second laws (2), we should end up with 0 about each loop at the steady-state solution. If the actual sum of our head loss is not equal to 0, then we will adjust all the flows in the loop by an amount given by the following formula, where a positive adjustment is in the clockwise direction.

  8. Trump says US should 'NOT GET INVOLVED' in conflict in Syria

    www.aol.com/news/trump-says-us-not-involved...

    WASHINGTON (Reuters) -President-elect Donald Trump said on Saturday the U.S. should not be involved in the conflict in Syria, where rebel forces are threatening the government of President Bashar ...

  9. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.