enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  3. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Calculating the distance between geographical coordinates is based on some level of abstraction; it does not provide an exact distance, which is unattainable if one attempted to account for every irregularity in the surface of the Earth. [1] Common abstractions for the surface between two geographic points are: Flat surface; Spherical surface;

  4. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    For example, to find the midpoint of the path, substitute σ = 1 ⁄ 2 (σ 01 + σ 02); alternatively to find the point a distance d from the starting point, take σ = σ 01 + d/R. Likewise, the vertex, the point on the great circle with greatest latitude, is found by substituting σ = + 1 ⁄ 2 π. It may be convenient to parameterize the ...

  5. Marine navigation - Wikipedia

    en.wikipedia.org/wiki/Marine_navigation

    Navigation that follows the shortest distance between two points, i.e., that which follows a great circle. Such routes yield the shortest distance between two points on the globe. [16] To calculate the bearing and distance between two points it is necessary to solve a spherical triangle whose vertices are the origin, the destination, and the ...

  6. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing ...

  7. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  8. Rhumb line - Wikipedia

    en.wikipedia.org/wiki/Rhumb_line

    On a Mercator projection map, any rhumb line is a straight line; a rhumb line can be drawn on such a map between any two points on Earth without going off the edge of the map. But theoretically a loxodrome can extend beyond the right edge of the map, where it then continues at the left edge with the same slope (assuming that the map covers ...

  9. Meridian arc - Wikipedia

    en.wikipedia.org/wiki/Meridian_arc

    On the ellipsoid the exact distance between parallels at φ 1 and φ 2 is m(φ 1) − m(φ 2). For WGS84 an approximate expression for the distance Δm between the two parallels at ±0.5° from the circle at latitude φ is given by = (⁡)