Search results
Results from the WOW.Com Content Network
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes ...
Three types of cell division: binary fission (taking place in prokaryotes), mitosis and meiosis (taking place in eukaryotes).. When cells are ready to divide, because cell size is big enough or because they receive the appropriate stimulus, [20] they activate the mechanism to enter into the cell cycle, and they duplicate most organelles during S (synthesis) phase, including their centrosome.
The function or significance of mitosis, is the maintenance of the chromosomal set; each formed cell receives chromosomes that are alike in composition and equal in number to the chromosomes of the parent cell. Mitosis occurs in the following circumstances: Development and growth: The number of cells within an organism increases by mitosis.
At the end of G2, the cell transitions into mitosis, where the nucleus divides. The G2 to M transition is dramatic; there is an all-or-nothing effect, and the transition is irreversible. This is advantageous to the cell because entering mitosis is a critical step in the life cycle of a cell.
Schematic karyogram of the human chromosomes, showing their usual state in the G 0 and G 1 phase of the cell cycle. At top center it also shows the chromosome 3 pair in metaphase (annotated as "Meta."), which takes place after having undergone DNA synthesis which occurs in the S phase (annotated as S) of the cell cycle.
Kinetochores start, control, and supervise the striking movements of chromosomes during cell division. During mitosis, which occurs after the amount of DNA is doubled in each chromosome (while maintaining the same number of chromosomes) in S phase, two sister chromatids are held together by a centromere. Each chromatid has its own kinetochore ...
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
Figure 1. An interphase nucleus (left) and a set of mitotic chromosomes (right) from human tissue culture cells. Bar, 10 μm. Condensins are large protein complexes that play a central role in chromosome assembly and segregation during mitosis and meiosis (Figure 1).