Search results
Results from the WOW.Com Content Network
The Pelton wheel or Pelton Turbine is an impulse-type water turbine invented by American inventor Lester Allan Pelton in the 1870s. [ 1 ] [ 2 ] The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel .
Turbines: Mutt: 4.4 MW Pelton turbine Limmern: 4 x 250 MW variable-speed Francis pump-turbines Tierfehd: 3 x 87 MW Pelton turbines; 2 x 20 MW Pelton turbines; 1 x 140 MW Francis pump-turbine Linthal: 2 x 17.2 MW Pelton turbines: Installed capacity: Mutt: 4.4 MW Limmern: 1,000 MW Tierfehd: 441 MW Linthal: 34.4 MW: Annual generation: Mutt: 7 ...
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
Pelton patented his wheel as well as his novel design of the double cup runner, and in 1888 formed the Pelton Water Wheel Company in San Francisco to supply the growing demand for hydropower and hydroelectricity throughout the West and world-wide. [6] 'Pelton' is a trademark name for the products of that company, but the term is widely used ...
This is the modern form of the Pelton turbine which today achieves up to 92% efficiency. Pelton had been quite an effective promoter of his design and although Doble took over the Pelton company he did not change the name to Doble because it had brand name recognition. Turgo and cross-flow turbines were later impulse designs.
Turgo turbine and generator At Milford Sound, New Zealand. The Turgo turbine is an impulse water turbine designed for medium head applications. Operational Turgo turbines achieve efficiencies of about 87%. In factory and lab tests Turgo turbines perform with efficiencies of up to 90%. It works with net heads between 15 and 300 m. [1]
The turbine assembly is a five-jet configuration; the stream of each jet is 184.7 mm (7.2716535 inches) in diameter with an exit velocity of 191.5 meters/second (628.28 ft/s). The kinetic energy of each of the 5 streams i.e. 1 from each jet) is approximately 92.16 MW (Q = 5 cubic meters per second, v = 191.5 m/s, H = 1869 m).
Specific speed N s, is used to characterize turbomachinery speed. [1] Common commercial and industrial practices use dimensioned versions which are of equal utility. Specific speed is most commonly used in pump applications to define the suction specific speed —a quasi non-dimensional number that categorizes pump impellers as to their type and proportions.