Search results
Results from the WOW.Com Content Network
In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. [1] It is part of the families of probabilistic graphical models and variational Bayesian methods .
Cascading diffusion model stacks multiple diffusion models one after another, in the style of Progressive GAN. The lowest level is a standard diffusion model that generate 32x32 image, then the image would be upscaled by a diffusion model specifically trained for upscaling, and the process repeats. [53]
A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence.The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. [1]
A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.
The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [2] [3] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom .
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
The original GAN method is based on the GAN game, a zero-sum game with 2 players: generator and discriminator. The game is defined over a probability space (,,), The generator's strategy set is the set of all probability measures on (,), and the discriminator's strategy set is the set of measurable functions : [,].