Search results
Results from the WOW.Com Content Network
When comparing a polar and nonpolar molecule with similar molar masses, the polar molecule in general has a higher boiling point, because the dipole–dipole interaction between polar molecules results in stronger intermolecular attractions. One common form of polar interaction is the hydrogen bond, which is also known as the H-bond.
Many of the key molecular players implicated in cell polarity are well conserved. For example, in metazoan cells, the PAR-3/PAR-6/aPKC complex plays a fundamental role in cell polarity. While the biochemical details may vary, some of the core principles such as negative and/or positive feedback between different molecules are common and ...
Electrical potential surface of paracetamol showing polar areas in red and blue. The polar surface area (PSA) or topological polar surface area (TPSA) of a molecule is defined as the surface sum over all polar atoms or molecules, primarily oxygen and nitrogen, also including their attached hydrogen atoms.
Structure of iodine heptafluoride, an example of a molecule with the pentagonal-bipyramidal coordination geometry. In chemistry, a pentagonal bipyramid is a molecular geometry with one atom at the centre with seven ligands at the corners of a pentagonal bipyramid. A perfect pentagonal bipyramid belongs to the molecular point group D 5h.
The equilibrium constant tends to be high in nonpolar solvents; when K keto→enol is equal or greater than 1, the enol form is favoured. The keto form becomes more favourable in polar, hydrogen-bonding solvents, such as water. [7] The enol form is a vinylogous analogue of a carboxylic acid. [citation needed]
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
In geometry, a polar point group is a point group in which there is more than one point that every symmetry operation leaves unmoved. [1] The unmoved points will constitute a line, a plane, or all of space. While the simplest point group, C 1, leaves all points invariant, most polar point groups will move some, but not all points. To describe ...
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.