Search results
Results from the WOW.Com Content Network
1.3.2 Access by key. 1.3.3 ... Comparison of C# and Java; ... or when the performance characteristics of a hash table are preferred over those of an AVL tree. ...
With the new operations, the implementation of AVL trees can be more efficient and highly-parallelizable. [13] The function Join on two AVL trees t 1 and t 2 and a key k will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2.
In computer science, a Judy array is a data structure implementing a type of associative array with high performance and low memory usage. [1] Unlike most other key-value stores, Judy arrays use no hashing, leverage compression on their keys (which may be integers or strings), and can efficiently represent sparse data; that is, they may have large ranges of unassigned indices without greatly ...
CGAL : Computational Geometry Algorithms Library in C++ contains a robust implementation of Range Trees; Boost.Icl offers C++ implementations of interval sets and maps. IntervalTree (Python) - a centered interval tree with AVL balancing, compatible with tagged intervals; Interval Tree (C#) - an augmented interval tree, with AVL balancing
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
With the new operations, the implementation of weight-balanced trees can be more efficient and highly-parallelizable. [10] [11] Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than ...
The disadvantage of association lists is that the time to search is O, where n is the length of the list. [3] For large lists, this may be much slower than the times that can be obtained by representing an associative array as a binary search tree or as a hash table. Additionally, unless the list is regularly pruned to remove elements with ...
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies: