Search results
Results from the WOW.Com Content Network
This is the partition function of one harmonic oscillator. Because, statistically, heat capacity, energy, and entropy of the solid are equally distributed among its atoms, we can work with this partition function to obtain those quantities and then simply multiply them by ′ to get the total. Next, let's compute the average energy of each ...
Theoretical models of oscillating reactions have been studied by chemists, physicists, and mathematicians. In an oscillating system the energy-releasing reaction can follow at least two different pathways, and the reaction periodically switches from one pathway to another. One of these pathways produces a specific intermediate, while another ...
Heat sinks function by efficiently transferring thermal energy ("heat") from an object at high temperature to a second object at a lower temperature with a much greater heat capacity. This rapid transfer of thermal energy quickly brings the first object into thermal equilibrium with the second, lowering the temperature of the first object ...
The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).
Reduced specific heat for KCl, TiO2, and graphite, compared with the Debye theory based on elastic measurements (solid lines) [1]. In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat (heat capacity) in a solid. [2]
The Heaviside step function in its discrete form is an example of a bang–bang control signal. Due to the discontinuous control signal, systems that include bang–bang controllers are variable structure systems , and bang–bang controllers are thus variable structure controllers.
In addition, an oscillating system may be subject to some external force, as when an AC circuit is connected to an outside power source. In this case the oscillation is said to be driven. The simplest example of this is a spring-mass system with a sinusoidal driving force.
A smaller range of voltage control then suffices to stabilize the oscillator frequency in applications where temperature varies, such as heat buildup inside a transmitter. Placing the oscillator in a crystal oven at a constant but higher-than-ambient temperature is another way to stabilize oscillator frequency.