Search results
Results from the WOW.Com Content Network
substitution of symbols or numeric values for certain expressions; change of form of expressions: expanding products and powers, partial and full factorization, rewriting as partial fractions, constraint satisfaction, rewriting trigonometric functions as exponentials, transforming logic expressions, etc. partial and total differentiation
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
The formula calculator concept can be applied to all types of calculator, including arithmetic, scientific, statistics, financial and conversion calculators. The calculation can be typed or pasted into an edit box of: A software package that runs on a computer, for example as a dialog box. An on-line formula calculator hosted on a web site.
These two groups can be attributed by some metamorphosis to the two "fingers" of the "upper hand" of the Mandelbrot set; therefore, the number of "spokes" increases from one "seahorse" to the next by 2; the "hub" is a Misiurewicz point. Between the "upper part of the body" and the "tail", there is a distorted copy of the Mandelbrot set, called ...
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include: Simplification of algebraic expressions, in computer algebra; Simplification of boolean expressions i.e. logic optimization
An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.
Step 4 is where the units digit to step 3’s initial answer to: (u 1 • u 2) is attached (symbolized by: @) to the end of the sum of steps 1-3. Step 4 = D @ u (u 1 • u 2) = E. Finally this number is taken and the following is added to it: Step 5 = E + (T 1 • T 2) = Final Answer. For example, in the following problem: 79 • 26, by ...
In particular, if either or in the complex domain can be computed with some complexity, then that complexity is attainable for all other elementary functions. Below, the size n {\displaystyle n} refers to the number of digits of precision at which the function is to be evaluated.