enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.

  3. Triangle of partition numbers - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_partition_numbers

    Their numbers can be arranged into a triangle, the triangle of partition numbers, in which the th row gives the partition numbers (), (), …, (): [1] k n

  4. Bell triangle - Wikipedia

    en.wikipedia.org/wiki/Bell_triangle

    The Bell numbers themselves, on the left and right sides of the triangle, count the number of ways of partitioning a finite set into subsets, or equivalently the number of equivalence relations on the set. Sun & Wu (2011) provide the following combinatorial interpretation of each value in the triangle.

  5. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.

  6. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Such a partition is called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6: 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n).

  7. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...

  8. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    However, the coefficient of x 12 is −1 because there are seven ways to partition 12 into an even number of distinct parts, but there are eight ways to partition 12 into an odd number of distinct parts, and 7 − 8 = −1. This interpretation leads to a proof of the identity by canceling pairs of matched terms (involution method). [1]

  9. Quotition and partition - Wikipedia

    en.wikipedia.org/wiki/Quotition_and_partition

    If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .