enow.com Web Search

  1. Ads

    related to: laminar flow theatres explained

Search results

  1. Results from the WOW.Com Content Network
  2. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    Laminar flow hoods are used to exclude contaminants from sensitive processes in science, electronics and medicine. Air curtains are frequently used in commercial settings to keep heated or refrigerated air from passing through doorways. A laminar flow reactor (LFR) is a reactor that uses laminar flow to study chemical reactions and process ...

  3. Laminar flow reactor - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow_reactor

    Compared to turbulent flow, laminar flow tends to have a lower velocity and is generally at a lower Reynolds number. Turbulent flow, on the other hand, is irregular and travels at a higher speed. Therefore the flow velocity of a turbulent flow on one cross section is often assumed to be constant, or "flat". The "non-flat" flow velocity of ...

  4. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    Turbulent flow is defined as the flow in which the system's inertial forces are dominant over the viscous forces. This phenomenon is described by Reynolds number, a unit-less number used to determine when turbulent flow will occur. Conceptually, the Reynolds number is the ratio between inertial forces and viscous forces.

  5. Laminar–turbulent transition - Wikipedia

    en.wikipedia.org/wiki/Laminar–turbulent_transition

    When many random vortices erupt as turbulence onsets, the generalized freezing of laminar slip (laminar interlocking) is associated with noise and a dramatic increase in resistance to flow. This might also explain the parabolic isovelocity profile of laminar flow abruptly changing to the flattened profile of turbulent flow – as laminar slip ...

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In the case of laminar flow, for a circular cross section: =, =, where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well ...

  7. Eddy diffusion - Wikipedia

    en.wikipedia.org/wiki/Eddy_diffusion

    The mean term (in angular brackets) represents a laminar component of the flow. Note that the mean field is in general a function of space and time, and not just a constant. Average in this sense does not suggest averaging over all available data in space and time, but merely filtering out the turbulent motion.

  8. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example.

  9. Kozeny–Carman equation - Wikipedia

    en.wikipedia.org/wiki/Kozeny–Carman_equation

    The equation is only valid for creeping flow, i.e. in the slowest limit of laminar flow. The equation was derived by Kozeny (1927) [ 1 ] and Carman (1937, 1956) [ 2 ] [ 3 ] [ 4 ] from a starting point of (a) modelling fluid flow in a packed bed as laminar fluid flow in a collection of curving passages/tubes crossing the packed bed and (b ...

  1. Ads

    related to: laminar flow theatres explained