enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron hole - Wikipedia

    en.wikipedia.org/wiki/Electron_hole

    When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.

  3. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.

  4. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For holes, is the number of holes per unit volume in the valence band. To calculate this number for electrons, we start with the idea that the total density of conduction-band electrons, n 0 {\displaystyle n_{0}} , is just adding up the conduction electron density across the different energies in the band, from the bottom of the band E c ...

  5. Mass action law (electronics) - Wikipedia

    en.wikipedia.org/wiki/Mass_action_law_(electronics)

    In electronics and semiconductor physics, the law of mass action relates the concentrations of free electrons and electron holes under thermal equilibrium.It states that, under thermal equilibrium, the product of the free electron concentration and the free hole concentration is equal to a constant square of intrinsic carrier concentration .

  6. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.

  7. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...

  8. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.

  9. Free carrier absorption - Wikipedia

    en.wikipedia.org/wiki/Free_carrier_absorption

    Moreover, the thermal fluctuation of each electron should be taken into account. Therefore, a statistical approach is needed. To predict the optical transition with appropriate precision, one chooses an approximation, called the assumption of quasi-thermal distributions, of the electrons in the conduction band and of the holes in the valence band.