enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.

  3. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.

  4. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  5. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]

  6. Squared deviations from the mean - Wikipedia

    en.wikipedia.org/wiki/Squared_deviations_from...

    Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for analysis of variance involve the partitioning of a ...

  7. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.

  8. Normal-gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Normal-gamma_distribution

    meaning that the conditional distribution is a normal distribution with mean and precision — equivalently, with variance / (). Suppose also that the marginal distribution of T is given by T ∣ α , β ∼ Gamma ⁡ ( α , β ) , {\displaystyle T\mid \alpha ,\beta \sim \operatorname {Gamma} (\alpha ,\beta ),}

  9. Index of dispersion - Wikipedia

    en.wikipedia.org/wiki/Index_of_dispersion

    In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...