enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral of the secant function - Wikipedia

    en.wikipedia.org/wiki/Integral_of_the_secant...

    A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator by sec θ + tan θ and then using the substitution u = sec θ + tan θ. This substitution can be obtained from the derivatives of secant and tangent added together, which have secant as a common factor. [6]

  3. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    The secant method can be interpreted as a method in which the derivative is replaced by an approximation and is thus a quasi-Newton method. If we compare Newton's method with the secant method, we see that Newton's method converges faster (order 2 against order the golden ratio φ ≈ 1.6). [2]

  4. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve. A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P.

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    The tangent line is a limit of secant lines just as the derivative is a limit of difference quotients. For this reason, the derivative is sometimes called the slope of the function f. [48]: 61–63 Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...

  8. Integral of secant cubed - Wikipedia

    en.wikipedia.org/wiki/Integral_of_secant_cubed

    where is the inverse Gudermannian function, the integral of the secant function. There are a number of reasons why this particular antiderivative is worthy of special attention: The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same ...

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.