Search results
Results from the WOW.Com Content Network
4-Nitrochlorobenzene is the organic compound with the formula ClC 6 H 4 NO 2. It is a pale yellow solid. 4-Nitrochlorobenzene is a common intermediate in the production of a number of industrially useful compounds, including antioxidants commonly found in rubber. Other isomers with the formula ClC 6 H 4 NO 2 include 2-nitrochlorobenzene and 3 ...
4-Nitrobenzoic acid is an organic compound with the formula C 6 H 4 (NO 2)CO 2 H. It is a pale yellow solid. It is a precursor to 4-nitrobenzoyl chloride, the precursor to the anesthetic procaine and folic acid. It is also a precursor to 4-aminobenzoic acid. [6]
In purple bacteria, NADH is formed by reverse electron flow due to the lower chemical potential of this reaction center. In all cases, however, a proton motive force is generated and used to drive ATP production via an ATPase. Most photosynthetic microbes are autotrophic, fixing carbon dioxide via the Calvin cycle.
NH 4 + + NO 2 − → N 2 + 2 H 2 O. In some wastewater treatment plants, compounds such as methanol, ethanol, acetate, glycerin, or proprietary products are added to the wastewater to provide a carbon and electron source for denitrifying bacteria. [34]
Nitrobacter play an important role in the nitrogen cycle by oxidizing nitrite into nitrate in soil and marine systems. [2] Unlike plants, where electron transfer in photosynthesis provides the energy for carbon fixation, Nitrobacter uses energy from the oxidation of nitrite ions, NO 2 −, into nitrate ions, NO 3 −, to fulfill their energy needs.
CAS number; C 4 Br 2: dibromobutadiyne: 36333-41-2 C 4 Ce: cerium tetracarbide: 12151-79-0 C 4 ClF 7 O: heptafluorobutyryl chloride: 375-16-6 C 4 Cl 2 F 4 O 2: tetrafluorosuccinyl chloride: 356-15-0 C 4 Cl 2 F 4 O 3: chlorodifluoroacetic anhydride: 2834-23-3 C 4 Cl 2 O 4 Rh 2: dirhodium tetracarbonyl dichloride: 14523-22-9 C 4 Cl 3 CoO 4 Si ...
The aquatic microbial loop is a marine trophic pathway which incorporates dissolved organic carbon into the food chain.. The microbial loop describes a trophic pathway where, in aquatic systems, dissolved organic carbon (DOC) is returned to higher trophic levels via its incorporation into bacterial biomass, and then coupled with the classic food chain formed by phytoplankton-zooplankton-nekton.
Since hydrocarbonoclastic bacteria can oxidize long carbon compounds, their metabolism includes part of the large family of biotic reactions in the biogeochemical carbon cycle. Hydrocarbons, especially alkanes, are produced by myriad organisms as waste, for defense, as structural elements, and as chemoattractants. [34]