Search results
Results from the WOW.Com Content Network
Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
The table implementation for the Bigtable system was developed starting in about 2004, and is based on a different Google internal code base than the LevelDB code. That code base relies on a number of Google code libraries that are not themselves open sourced, so directly open sourcing that code would have been difficult.
The steps specified in the sequence are relative to the current node, not absolute. For example, if the current node is v j, and v j has d neighbors, then the traversal sequence will specify the next node to visit, v j+1, as the i th neighbor of v j, where 1 ≤ i ≤ d.
An example of an A* algorithm in action where nodes are cities connected with roads and h(x) is the straight-line distance to the target point: Key: green: start; blue: goal; orange: visited The A* algorithm has real-world applications.
Some object-oriented languages such as C#, C++ (later versions), Delphi (later versions), Go, Java (later versions), Lua, Perl, Python, Ruby provide an intrinsic way of iterating through the elements of a collection without an explicit iterator. An iterator object may exist, but is not represented in the source code.
For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7] Another possible implementation of iterative depth-first search uses a stack of iterators of the list of neighbors of a node, instead of a stack of ...