enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...

  3. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  4. Cycles and fixed points - Wikipedia

    en.wikipedia.org/wiki/Cycles_and_fixed_points

    The size n of the orbit is called the length of the corresponding cycle; when n = 1, the single element in the orbit is called a fixed point of the permutation. A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order.

  5. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  6. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    It can produce more permutations if one exercises the generator a great many times before starting to use it for generating permutations, but this is a very inefficient way of increasing randomness: supposing one can arrange to use the generator a random number of up to a billion, say 2 30 for simplicity, times between initialization and ...

  8. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    The formula counting all functions N → X is not useful here, because the number of them grouped together by permutations of N varies from one function to another. Rather, as explained under combinations , the number of n -multicombinations from a set with x elements can be seen to be the same as the number of n -combinations from a set with x ...

  9. Tuple - Wikipedia

    en.wikipedia.org/wiki/Tuple

    [7] n-tuples whose entries come from a set of m elements are also called arrangements with repetition, permutations of a multiset and, in some non-English literature, variations with repetition. The number of n-tuples of an m-set is m n. This follows from the combinatorial rule of product. [8]