enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

  3. Ricci flow - Wikipedia

    en.wikipedia.org/wiki/Ricci_flow

    Since any Ricci flow on a two-dimensional manifold is confined to a single conformal class, it can be recast as a partial differential equation for a scalar function on the fixed Riemannian manifold (M, g 0). As such, the Ricci flow in this setting can also be studied by purely analytic methods; correspondingly, there are alternative non ...

  4. Mean curvature flow - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature_flow

    In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space).

  5. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).

  6. Isothermal coordinates - Wikipedia

    en.wikipedia.org/wiki/Isothermal_coordinates

    The existence of isothermal coordinates on a smooth two-dimensional Riemannian manifold is a corollary of the standard local solvability result in the analysis of elliptic partial differential equations. In the present context, the relevant elliptic equation is the condition for a function to be harmonic relative to

  7. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    On a Riemannian manifold it is an elliptic operator, while on a Lorentzian manifold it is hyperbolic. The Laplace–de Rham operator is defined by = + = (+), where d is the exterior derivative or differential and δ is the codifferential, acting as (−1) kn+n+1 ∗d∗ on k-forms, where ∗ is the Hodge star.

  8. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  9. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.