Search results
Results from the WOW.Com Content Network
with the derivative evaluated at = Another connexion with the confluent hypergeometric functions is that E 1 is an exponential times the function U(1,1,z): = (,,) The exponential integral is closely related to the logarithmic integral function li(x) by the formula
Using the chain rule, the reciprocal rule, and the fact that the derivative of the exponential function is again the exponential function, we see that the formula is correct for the first derivative of f for all x > 0 and that p 1 (x) is a polynomial of degree 0. Of course, the derivative of f is zero for x < 0.
The exponential function is an E-function, in its case c n = 1 for all of the n. If λ is an algebraic number then the Bessel function J λ is an E-function. The sum or product of two E-functions is an E-function. In particular E-functions form a ring. If a is an algebraic number and f(x) is an E-function then f(ax) will be an E-function.
[e] The extremum [] is called a local maximum if everywhere in an arbitrarily small neighborhood of , and a local minimum if there. For a function space of continuous functions, extrema of corresponding functionals are called strong extrema or weak extrema , depending on whether the first derivatives of the continuous functions are respectively ...
Let = be a -graded algebra, with product , equipped with a map : of degree (homologically graded) or degree + (cohomologically graded). We say that (,,) is a differential graded algebra if is a differential, giving the structure of a chain complex or cochain complex (depending on the degree), and satisfies a graded Leibniz rule.
The most basic non-trivial differential one-form is the "change in angle" form . This is defined as the derivative of the angle "function" (,) (which is only defined up to an additive constant), which can be explicitly defined in terms of the atan2 function.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.