enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    John M. Howie, Fundamentals of Semigroup Theory (1995), Clarendon Press, Oxford ISBN 0-19-851194-9 M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs , De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7 .

  3. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  4. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Its unit element is the class of the ordinary 2-sphere. Furthermore, if a denotes the class of the torus, and b denotes the class of the projective plane, then every element c of the monoid has a unique expression in the form c = na + mb where n is a positive integer and m = 0, 1, or 2. We have 3b = a + b.

  5. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.

  6. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    A cancellative semigroup is one having the cancellation property: [9] a · b = a · c implies b = c and similarly for b · a = c · a. Every group is a cancellative semigroup, and every finite cancellative semigroup is a group. A band is a semigroup whose operation is idempotent. A semilattice is a semigroup whose operation is idempotent and ...

  7. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  8. Transformation semigroup - Wikipedia

    en.wikipedia.org/wiki/Transformation_semigroup

    In group theory, Cayley's theorem asserts that any group G is isomorphic to a subgroup of the symmetric group of G (regarded as a set), so that G is a permutation group.This theorem generalizes straightforwardly to monoids: any monoid M is a transformation monoid of its underlying set, via the action given by left (or right) multiplication.

  9. Rational monoid - Wikipedia

    en.wikipedia.org/wiki/Rational_monoid

    A finite monoid is rational. A group is a rational monoid if and only if it is finite.; A finitely generated free monoid is rational. The monoid M4 generated by the set {0,e, a,b, x,y} subject to relations in which e is the identity, 0 is an absorbing element, each of a and b commutes with each of x and y and ax = bx, ay = by = bby, xx = xy = yx = yy = 0 is rational but not automatic.