Search results
Results from the WOW.Com Content Network
Soil consolidation refers to the mechanical process by which soil changes volume gradually in response to a change in pressure. This happens because soil is a three-phase material, comprising soil grains and pore fluid, usually groundwater [ clarification needed ] .
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
The soil moisture velocity equation consists of two terms. The first "advection-like" term was developed to simulate surface infiltration [ 4 ] and was extended to the water table, [ 5 ] which was verified using data collected in a column experimental that was patterned after the famous experiment by Childs & Poulovassilis (1962) [ 6 ] and ...
These equations relate a change in total or water volume (or ) per change in applied stress (effective stress — or pore pressure — ) per unit volume. The compressibilities (and therefore also S s ) can be estimated from laboratory consolidation tests (in an apparatus called a consolidometer), using the consolidation theory of soil mechanics ...
The available volume for additional water in the soil depends on the porosity of the soil [7] and the rate at which previously infiltrated water can move away from the surface through the soil. The maximum rate at that water can enter soil in a given condition is the infiltration capacity. If the arrival of the water at the soil surface is less ...
the discharge rate (Q) from the recharge rate (R) in a water balance as detailed in the article: hydrology (agriculture) the permissible long term average depth of the water table (Dw) on the basis of agricultural drainage criteria; the soil's hydraulic conductivity (Ka and Kb) by measurements; the depth of the bottom of the aquifer (Di)
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]
Where w s is the mean source width, ρ w is the density of water, R 0 is the average precipitation rate, W* is the width of the channel head, ρ s is the saturated bulk density of the soil, K z is the vertical saturated hydraulic conductivity, θ is the slope at the channel head, and φ is the soil angle of internal friction.