Search results
Results from the WOW.Com Content Network
When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
A bipartite graph with 4 vertices on each side, 13 edges, and no , subgraph, and an equivalent set of 13 points in a 4 × 4 grid, showing that (;).. The number (;) asks for the maximum number of edges in a bipartite graph with vertices on each side that has no 4-cycle (its girth is six or more).
The Ruzsa–Szemerédi problem asks for the answer to these equivalent questions. To convert the bipartite graph induced matching problem into the unique triangle problem, add a third set of vertices to the graph, one for each induced matching, and add edges from vertices and of the bipartite graph to vertex in this third set whenever bipartite ...
In the mathematics of graph drawing, Turán's brick factory problem asks for the minimum number of crossings in a drawing of a complete bipartite graph. The problem is named after Pál Turán , who formulated it while being forced to work in a brick factory during World War II.
The bipartite realization problem is equivalent to the question, if there exists a labeled bipartite subgraph of a complete bipartite graph to a given degree sequence. The hitchcock problem asks for such a subgraph minimizing the sum of the costs on each edge which are given for the complete bipartite graph.
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.
A stronger definition of bipartiteness is: a hypergraph is called bipartite if its vertex set V can be partitioned into two sets, X and Y, such that each hyperedge contains exactly one element of X. [2] [3] Every bipartite graph is also a bipartite hypergraph. Every bipartite hypergraph is 2-colorable, but bipartiteness is stronger than 2 ...