enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy operator - Wikipedia

    en.wikipedia.org/wiki/Energy_operator

    In quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry.

  3. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/.../Hamiltonian_(quantum_mechanics)

    In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy.Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy.

  4. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.

  5. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.

  6. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.

  7. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    In quantum mechanics, a translation operator is defined as an operator ... In quantum mechanics, the Hamiltonian is the operator corresponding to the total energy of ...

  8. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    For this reason, a is called an annihilation operator ("lowering operator"), and a † a creation operator ("raising operator"). The two operators together are called ladder operators . Given any energy eigenstate, we can act on it with the lowering operator, a , to produce another eigenstate with ħω less energy.

  9. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The measurable values of the energy of a quantum system are given by the eigenvalues of the Hamiltonian operator, while its eigenstates give the possible energy states of the system. A value of energy is said to be degenerate if there exist at least two linearly independent energy states associated with it.