Search results
Results from the WOW.Com Content Network
An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy. It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms).
All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include:
For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 100101 2 = 1 + 4 + 32). This sequence is minimal, since no value ...
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
Illustration of an exact sequence of groups using Euler diagrams. In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next.
Examples are the Chimney of Turku Energia, in Turku, Finland, featuring the start of the Fibonacci sequence in 2 m high neon lights, and the representation of the first Fibonacci numbers with red neon lights on one face of the four-faced dome of the Mole Antonelliana in Turin, Italy, part of the artistic work Il volo dei Numeri ("Flight of the ...
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
In mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in .. Every metric space is naturally a topological space, and for metric spaces, the notions of compactness and sequential compactness are equivalent (if one assumes countable choice).