enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q T Q = Q Q T = I , {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where Q T is the transpose of Q and I is the identity matrix .

  3. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...

  4. Orthonormal basis - Wikipedia

    en.wikipedia.org/wiki/Orthonormal_basis

    An orthonormal basis can be derived from an orthogonal basis via normalization. The choice of an origin and an orthonormal basis forms a coordinate frame known as an orthonormal frame. For a general inner product space , an orthonormal basis can be used to define normalized orthogonal coordinates on .

  5. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    An orthogonal matrix is a matrix whose column vectors are orthonormal to each other. An orthonormal basis is a basis whose vectors are both orthogonal and normalized (they are unit vectors ). A conformal linear transformation preserves angles and distance ratios, meaning that transforming orthogonal vectors by the same conformal linear ...

  6. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.

  7. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    It is possible to give a fairly long list of equivalent definitions of a normal matrix. Let A be a n × n complex matrix. Then the following are equivalent: A is normal. A is diagonalizable by a unitary matrix. There exists a set of eigenvectors of A which forms an orthonormal basis for C n.

  8. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.

  9. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    In other words, the space of orthonormal bases is like the orthogonal group, but without a choice of base point: given an orthogonal space, there is no natural choice of orthonormal basis, but once one is given one, there is a one-to-one correspondence between bases and the orthogonal group.