enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Many of these neutrons activate atomic nuclei before reaching the Earth's surface, while a smaller fraction interact with nuclei in the atmospheric air. [3] When these neutrons interact with nitrogen-14 atoms, they can transform them into carbon-14 (14C), which is extensively utilized in radiocarbon dating. [4]

  3. Free neutron decay - Wikipedia

    en.wikipedia.org/wiki/Free_neutron_decay

    For the free neutron, the decay energy for this process (based on the rest masses of the neutron, proton and electron) is 0.782 343 MeV.That is the difference between the rest mass of the neutron and the sum of the rest masses of the products.

  4. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    At freeze out, the neutron–proton ratio was about 1/6. However, free neutrons are unstable with a mean life of 880 sec; some neutrons decayed in the next few minutes before fusing into any nucleus, so the ratio of total neutrons to protons after nucleosynthesis ends is about 1/7.

  5. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Fusion reactors that generate neutrons are likely to create radioactive waste, but the waste is composed of neutron-activated lighter isotopes, which have relatively short (50–100 years) decay periods as compared to typical half-lives of 10,000 years [122] for fission waste, which is long due primarily to the long half-life of alpha-emitting ...

  6. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    The sea of neutrons formed after neutron drip provides additional pressure support, which helps maintain the star's structural integrity and prevents gravitational collapse. The neutron drip takes place within the inner crust of the neutron star and starts when the density becomes so high that nuclei can no longer hold additional neutrons. [57]

  7. Neutron emission - Wikipedia

    en.wikipedia.org/wiki/Neutron_emission

    As a consequence of the Pauli exclusion principle, nuclei with an excess of protons or neutrons have a higher average energy per nucleon.Nuclei with a sufficient excess of neutrons have a greater energy than the combination of a free neutron and a nucleus with one less neutron, and therefore can decay by neutron emission.

  8. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    Free neutrons—those not inside an atomic nucleus—are already known to decay into protons (and an electron and an antineutrino) in a process called beta decay. Free neutrons have a half-life of 10 minutes (610.2 ± 0.8 s) [17] due to the weak interaction. Neutrons bound inside a nucleus have an immensely longer half-life – apparently as ...

  9. Neutron transport - Wikipedia

    en.wikipedia.org/wiki/Neutron_transport

    The first term on the right hand side is the production of neutrons in this phase space due to fission, while the second term on the right hand side is the production of neutrons in this phase space due to delayed neutron precursors (i.e., unstable nuclei which undergo neutron decay).