Search results
Results from the WOW.Com Content Network
If is a root system, the Dynkin diagram for the dual root system is obtained from the Dynkin diagram of by keeping all the same vertices and edges, but reversing the directions of all arrows. Thus, we can see from their Dynkin diagrams that B n {\displaystyle B_{n}} and C n {\displaystyle C_{n}} are dual to each other.
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to at least one of the roots, and as such is a finite reflection ...
A connected split reductive algebraic group over is uniquely determined (up to isomorphism) by its root datum, which is always reduced. Conversely for any root datum there is a reductive algebraic group. A root datum contains slightly more information than the Dynkin diagram, because it also determines the center of the group.
The surprising part of the character formula is that when we compute this product, only a small number of terms actually remain. Many more terms than this occur at least once in the product of the character and the Weyl denominator, but most of these terms cancel out to zero. [5]
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form = = + / where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n).
The outer automorphism group of E 6 (q) is the product of the diagonal automorphism group Z/gcd(3,q−1)Z (given by the action of E 6,ad (q)), the group Z/2Z of diagram automorphisms, and the group of field automorphisms (i.e., cyclic of order f if q=p f where p is prime).