enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    There are at least two ways of representing quaternions as matrices in such a way that quaternion addition and multiplication correspond to matrix addition and matrix multiplication. One is to use 2 × 2 complex matrices, and the other is to use 4 × 4 real matrices.

  3. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    Quaternion multiplication is noncommutative (because of the cross product, which anti-commutes), while scalar–scalar and scalar–vector multiplications commute. From these rules it follows immediately that (see Quaternions § Quaternions and three-dimensional geometry):

  4. Dual quaternion - Wikipedia

    en.wikipedia.org/wiki/Dual_quaternion

    Multiplication of two dual quaternion follows from the multiplication rules for the quaternion units i, j, ... Dual quaternion toolbox, a Matlab toolbox.

  5. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    which is a quaternion of unit length (or versor) since ‖ ‖ = + + + = Most importantly, the above equations for composition of rotations are precisely the equations for multiplication of quaternions =. In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with ...

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Now every quaternion component appears multiplied by two in a term of degree two, and if all such terms are zero what is left is an identity matrix. This leads to an efficient, robust conversion from any quaternion – whether unit or non-unit – to a 3 × 3 rotation matrix. Given:

  7. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.

  8. Versor - Wikipedia

    en.wikipedia.org/wiki/Versor

    In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = ⁡ = ⁡ + ⁡, =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).

  9. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The conjugate of that eigenvalue is also unity, yielding a pair of eigenvectors which define a fixed plane, and so the rotation is simple. In quaternion notation, a proper (i.e., non-inverting) rotation in SO(4) is a proper simple rotation if and only if the real parts of the unit quaternions Q L and Q R are equal in magnitude and have the same ...