Search results
Results from the WOW.Com Content Network
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
The characteristic polynomial of an endomorphism of a finite-dimensional ... which is a monic polynomial in x of degree n if ... Another example uses hyperbolic ...
For example, considered as polynomials over some field of characteristic p, the identity t p + 1 = (t + 1) p gives an example where the maximum degree of the three polynomials (a and b as the summands on the left hand side, and c as the right hand side) is p, but the degree of the radical is only 2.
The degree of a monomial is defined as the sum of all the exponents of the variables, including the implicit exponents of 1 for the variables which appear without exponent; e.g., in the example of the previous section, the degree is + +. The degree of is 1+1+2=4. The degree of a nonzero constant is 0.
In mathematics, the characteristic equation (or auxiliary equation [1]) is an algebraic equation of degree n upon which depends the solution of a given n th-order differential equation [2] or difference equation. [3] [4] The characteristic equation can only be formed when the differential equation is linear and homogeneous, and has constant ...
The polynomial x − x p has derivative 1 − p x p−1 which is 1 (because px is 0) but it has no inverse function. However, Kossivi Adjamagbo suggested extending the Jacobian conjecture to characteristic p > 0 by adding the hypothesis that p does not divide the degree of the field extension k(X) / k(F). [3]
The degree is the sum of the exponents on the variables; in this example, = + + A homogeneous polynomial is a polynomial made up of a sum of monomials of the same degree. For example, + + is a homogeneous polynomial of degree 5. Homogeneous polynomials also define homogeneous functions.