enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    Different from linear dimensionality reduction methods such as principal component analysis (PCA), diffusion maps are part of the family of nonlinear dimensionality reduction methods which focus on discovering the underlying manifold that the data has been sampled from. By integrating local similarities at different scales, diffusion maps give ...

  3. Matrix-free methods - Wikipedia

    en.wikipedia.org/wiki/Matrix-free_methods

    In computational mathematics, a matrix-free method is an algorithm for solving a linear system of equations or an eigenvalue problem that does not store the coefficient matrix explicitly, but accesses the matrix by evaluating matrix-vector products. [1] Such methods can be preferable when the matrix is so big that storing and manipulating it ...

  4. Dot plot (bioinformatics) - Wikipedia

    en.wikipedia.org/wiki/Dot_plot_(bioinformatics)

    One way to visualize the similarity between two protein or nucleic acid sequences is to use a similarity matrix, known as a dot plot. These were introduced by Gibbs and McIntyre in 1970 [1] and are two-dimensional matrices that have the sequences of the proteins being compared along the vertical and horizontal axes.

  5. Voigt profile - Wikipedia

    en.wikipedia.org/wiki/Voigt_profile

    since it is a convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth), and so the moment-generating function for the Cauchy distribution is not defined. It follows that the Voigt profile will not have a moment-generating function either, but the characteristic function for the Cauchy distribution is ...

  6. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.

  7. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  8. Eight-point algorithm - Wikipedia

    en.wikipedia.org/wiki/Eight-point_algorithm

    In theory, this algorithm can be used also for the fundamental matrix, but in practice the normalized eight-point algorithm, described by Richard Hartley in 1997, is better suited for this case. The algorithm's name derives from the fact that it estimates the essential matrix or the fundamental matrix from a set of eight (or more) corresponding ...

  9. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  1. Related searches seurat get normalized matrix method in excel example worksheet 1 free

    seurat get normalized matrix method in excel example worksheet 1 free body or force diagrams