Search results
Results from the WOW.Com Content Network
The higher frequency sound waves have a shorter wavelength and thus don't spread out as rapidly. For this reason, the resulting directivity of these devices is far higher than physically possible with any loudspeaker system. However, they are reported to have limited low-frequency reproduction abilities. See sound from ultrasound for more ...
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
Reflection is the change in direction of a wave when it hits an object. Many acoustic engineers took advantage from this. It is used for interior designs, either use reflections for benefits or eliminates the reflections. The sound waves usually reflect off the wall and interfere with other sound waves that are generated later.
Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance. The sound localization mechanisms of the mammalian auditory system have been extensively studied. The auditory system uses several cues for sound source localization, including time difference and level difference (or ...
Direction; Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz. In air at standard temperature and pressure, the corresponding wavelengths of sound waves range from 17 m (56 ft) to 17 mm (0.67 in). Sometimes speed and direction are combined as a velocity vector; wave number and direction are combined as a wave vector.
An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...
Sound is introduced at one end of the tube by forcing the pressure to vary in the direction of propagation, which causes a pressure gradient to travel perpendicular to the cross section at the speed of sound. When the wave reaches the end of the transmission line, its behaviour depends on what is present at the end of the line.
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...