Search results
Results from the WOW.Com Content Network
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Data (Greek: Δεδομένα, Dedomena) is a work by Euclid. It deals with the nature and implications of "given" information in geometrical problems. The subject matter is closely related to the first four books of Euclid's Elements.
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.
Euclid's proofs are essentially correct, but strictly speaking sometimes contain gaps because he tacitly uses some unstated assumptions, such as the existence of intersection points. In 1899 David Hilbert gave a complete set of ( second order ) axioms for Euclidean geometry, called Hilbert's axioms , and between 1926 and 1959 Tarski gave some ...
Pages in category "Works by Euclid" The following 4 pages are in this category, out of 4 total. This list may not reflect recent changes. E. Euclid's Data;
Commentary on the Data of Euclid. This work is written at a relatively advanced level as Theon tends to shorten Euclid's proofs rather than amplify them. [2] Commentary on the Optics of Euclid. This elementary-level work is believed to consist of lecture notes compiled by a student of Theon. [2] Commentary on the Almagest.