enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]

  3. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, [1] such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression.

  4. Impulse excitation technique - Wikipedia

    en.wikipedia.org/wiki/Impulse_excitation_technique

    E 1 and E 2 are the Young's moduli in the 1- and 2-direction and G 12 is the in-plane shear modulus. v 12 is the major Poisson's ratio and v 21 is the minor Poisson's ratio. The flexibility matrix [S] is symmetric. The minor Poisson's ratio can hence be found if E 1, E 2 and v 12 are known.

  5. Speeds of sound of the elements - Wikipedia

    en.wikipedia.org/wiki/Speeds_of_sound_of_the...

    CRC cites American Institute of Physics Handbook (AIPH) table 3f-2 for this value, but in AIPH table 2f-6 there are elastic constants reported that yield 3700,1570, 2620 WEL: 2680: AIPH: 3700: 1570: 2620: Table 2f-6. Calculated from Young's modulus of 147 GPa (lower than commonly accepted for Platinum), Poisson's ratio of 0.39, density of 21370 ...

  6. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  7. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    The plate elastic thickness (usually referred to as effective elastic thickness of the lithosphere). The elastic properties of the plate; The applied load or force; As flexural rigidity of the plate is determined by the Young's modulus, Poisson's ratio and cube of the plate's elastic thickness, it is a governing factor in both (1) and (2).

  8. Transverse isotropy - Wikipedia

    en.wikipedia.org/wiki/Transverse_isotropy

    The elasticity stiffness matrix has 5 independent constants, which are related to well known engineering elastic moduli in the following way. These engineering moduli are experimentally determined. These engineering moduli are experimentally determined.

  9. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.