Search results
Results from the WOW.Com Content Network
The uploader or another editor requests that a local copy of this file be kept. This image or media file may be available on the Wikimedia Commons as File:Python 3.3.2 reference document.pdf, where categories and captions may be viewed. While the license of this file may be compliant with the Wikimedia Commons, an editor has requested that the ...
English: PDF version of the Think Python Wikibook. This file was created with MediaWiki to LaTeX . The LaTeX source code is attached to the PDF file (see imprint).
In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]
Python's name is derived from the British comedy group Monty Python, whom Python creator Guido van Rossum enjoyed while developing the language. Monty Python references appear frequently in Python code and culture; [ 190 ] for example, the metasyntactic variables often used in Python literature are spam and eggs instead of the traditional foo ...
Matrix multiplication; Polynomial evaluation (e.g., with Horner's rule) Newton's method for evaluating functions (from the inverse function) Convolutions and artificial neural networks; Multiplication in double-double arithmetic; Fused multiply–add can usually be relied on to give more accurate results.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: